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In the experiments on powerful femtosecond laser pulses interacting with matter, strongly noniso-
thermal plasmas can be generated [H. M. Milchberg, R. R. Freeman, S. C. Davey, and R. M. Moore,
Phys. Rev. Lett. 61, 2364 (1988)]. In the present paper it is shown that if electron and ion temperatures
of plasmas satisfy the inequality T, >>T;, the kinetic equation for the electron distribution function tak-
ing into account electron-ion collisions as well as electron-electron collisions can be solved exactly
analytically. It is another example of the existence of an analytic solution of a kinetic equation in addi-

tion to the well-known case of the Lorentz model.

PACS number(s): 52.40.Nk, 52.25.Fi, 05.60.+w

I. INTRODUCTION

It is well known that when electron-electron (e-e) col-
lisions in electron-ion plasmas are neglected, the kinetic
equation for the electron distribution function in the
slightly nonequilibrium case can be solved analytically
[1]. It is also well known that if e-e collisions are taken
into account along with electron-ion (e-i) collisions, then
the kinetic equation can be solved only numerically [2] or
approximately via expansion in Sonine-Laguerre polyno-
mials [1].

In Silin’s paper [3] it was demonstrated that for strong-
ly nonisothermal plasmas where the electron temperature
is much higher than the ion temperature (7T,>>T;),
electron-electron interactions via plasma ion sound waves
dominate in the e-e collision integral rather than conven-
tional e-e binary collisions. Such an effect is negligible in
e-i interactions because ion sound velocity is much
greater than ion thermal velocity.

Silin and co-workers solved the electron kinetic equa-
tion for nonisothermal plasmas approximately, using the
Sonine-Laguerre polynomial expansion [4,5]. Unfor-
tunately, such an approach in the limiting case when e-e
collisions dominate leads to an unphysical result for elec-
trical conductivity [5].

The purpose of the present paper is to demonstrate
that using Silin’s result for the e-e collision integral in the
case of a strongly nonisothermal plasma, one can solve
the kinetic equation exactly analytically. This gives
another example of an exactly solvable version of the ki-
netic equation in addition to the well-known Lorentz
model, but in the rather more complicated case when
light-particle—light-particle collisions are considered
along with light-particle~heavy-particle collisions. It is
now possible to examine separately, unlike the well-
known Spitzer solution [2], the influence of e-e collisions
on the electron free path.

The results of the present paper can be of importance
in an analysis of the experimental results of ultrashort
powerful laser pulses interacting with matter, particularly
in reflectivity calculations [6,7].
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II. COLLISION INTEGRALS
FOR STRONGLY NONISOTHERMAL PLASMAS

The Boltzmann kinetic equation for the electron distri-
bution function f(p;,?) in the external electric field E;
can be written in the following form:

eE; o =I,+1I

i 3p; e s (1)

where I,; and I,, denote respective collision integrals and
e is the electron charge.

Since the ion mass M is assumed to be much larger
than the electron mass m, we can write [1]
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where Z is the ion charge, n; the ion number density, and
A the conventional Coulomb logarithm [see Eq. (4)].

For e-e collision integrals we have the Balescu-Lenard
expression
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where €(w, k) is the plasma dielectric function. It is well
known [1] that for an isothermal plasma (7T,=T;) the
main contribution to B g5 comes from the region k > 1/d
that corresponds to conventional binary collisions where
d ~d,~d; are Debye radii. Silin [4] drew attention to
the fact that for a nonisothermal plasma (d, >>d;), it is
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the long-wavelength region 1/d, <<k <<1/d; that gives
the dominant contribution to Bjj; This region corre-
sponds to slightly attenuating ion sound waves, which are
described by the roots of equation €(w,k)=0. Thus in a
strongly nonisothermal plasma, electrons can exchange
momentum not only in direct binary collisions, but also
via emission and absorption of plasma ion sound waves.
The analogous mechanism for an isothermal plasma has
no significance. In that case only electron plasma waves
with k <<1/d, can propagate without appreciable at-
tenuation and therefore the number of electrons that can
emit and absorb plasmons is exponentially small. Silin’s
formula for B {5 [3] can be obtained from (3) by using the
expression for the dielectric function of a strongly noniso-
thermal plasma [1]:
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where n, is the unit vector perpendicular to p and p’,
and A, =In(Z’MT2/mT}).

III. SOLUTION OF THE KINETIC EQUATION

For sufficiently small electric field £ we can seek the
solution of Eq. (1) in the conventional form

f=fotdf, df < Sy (5)
where
fo=n,/2am,T,)* *exp(—p2/2m,T,)

and the deviation §f is expressed as

E.
f = p’—m’—g<p)f0 : (©)

Substituting this expression into Eq. (1) and retaining
only leading terms, one obtains the following equation for
g:
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By direct substitution, one makes sure that the solution
of Eq. (7) can be expressed in the form
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and y can be calculated from the equation
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Now it is not difficult to calculate electric conductivity
via the conventional expression
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After calculating all integrals, one obtains
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It can be observed from this result that if e-e collisions
are neglected, expression (11) coincides with the well-
known result for a Lorentz plasma. If e-e collisions are
very strong (the collision integral tends to infinity), for in-
stance, when T, >>T;, the conductivity does not vanish.
It is reduced with respect to the Lorentz value by a large,
but nevertheless finite, factor 32Z /. If e-i collisions are
neglected, but e-e ones are not, conductivity becomes
infinite, as it should be from the common point of view,
because e-e collisions do not change the total momentum
of the electron subsystem. This result does not take place
in [5], where expansion in Sonine-Laguerre polynomials
was used to solve the kinetic equation.

It is also possible to solve the kinetic equation under
conditions of the existence of space gradients of plasma
parameters. For example, when V7,70, the Kkinetic
equation is written as (temperature is measured in energy
units)
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the solution of which can be found as above:
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For instance, for the entire electron energy flux Q;, one
obtains
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It can be seen from (11) that unlike electrical charge
flux, energy flux remains finite even when e-i collisions
are neglected.
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